您当前的位置 :首页 > 物联网 > 正文

LTE和WiMAX的比较与未来展望

通信世界网消息(CWW) LTE和WiMAX的比较与未来展望

中国移动通信集团河南有限公司三门峡分公司 茹慧芳 王卓

摘 要:LTE和WiMAX技术及其产业链分别是由3GPP和IEEE研究、发展和推广。虽然在技术层这两种技术面有很强的相似性,但它们之间的竞争却越演越烈。它们之间的竞争从两个标准化组织分别提出各自的准4G标准(基于IEEE 802.16e的移动WiMAX技术和基于3GPP R8的LTE技术)开始,持续到4G标准(基于IEEE 802.16m的WiMAX 2.0和基于3GPP R10的LTE-A)的提出。表面上看,这种竞争随着LTE技术获得绝对的优势而结束,但实际上WiMAX正计划与LTE技术在未来的多种混合接入模式中进行整合。

本文通过讨论这两种技术间的相似性和差异性,即一种技术相对于另一种技术的优点,找出使LTE技术在这场竞争中取得优势地位的关键因素,也探讨了影响这两种技术发展的诸如政策、历史及经济等非技术类因素。最后,结合当前LTE和WiMAX技术在其标准化过程中的动向,对这两种技术未来的发展前景进行了展望。

关键词:LTE; WiMAX; IEEE 802.16e;IEEE 802.16m;3GPP R8;3GPP R10

中图分类号: 文献标识码: 文章编号:

LTE and WiMAX: Comparison and Future Perspective

Abstract: Two wireless technologies, WiMAX based on IEEE standards and LTE standardized by 3GPP, are two competing technologies, nevertheless, are very technically similar. This competition started with the advent of their pre-4G versions (802.16e for Mobile WiMAX and 3GPP release 8 for LTE) and continued with the advent of their 4G versions (WiMAX 2.0 based on IEEE 802.16 m and LTE-Advanced standardized by Release 10). It looks that the competition ended with the advantage of LTE. Plans are set for WiMAX to migrate/integrate with LTE in a multiple heterogeneous access technology mode. This article addresses the technical similarities and differences that advantage one technology over the other technology in order to determine which of these factors might have contributed to LTE winning. Non-technical factors of commercial and historical nature which might also advantage one technology over the other one are also explored. Finally, current activities in the standardization of both WiMAX and LTE are presented with a perspective on the prospects of both technologies.

Key words: LTE;WiMAX;IEEE 802.16e;IEEE 802.16m;3GPP R8;3GPP R10


  1 引言

WiMAX(全球微波互联接入,Worldwide Interoperability for Microwave Access)是一种由IEEE(电气和电子工程师协会,Institute of Electrical and Electronics Engineers)提出的一种标准化技术。IEEE发布了一系列标准,其中IEEE 802.16系列标准的制定开始于2000年,目的在于提供一种无线城域网技术标准。IEEE 802.16系列标准中真正具有实用性的是2004年发布IEEE 802.16d标准[1]。这一标准是为固网用户提供最后一公里的高吞吐率的无线数据接入技术,对传统的DSL(数字用户专线,Digital Subscriber Line)和同轴电缆运营商形成了真正的威胁。被认为是移动WiMAX或WiMAX 1.0的IEEE 802.16e 标准发布于2005年[2]。2011年3月,WiMAX 2.0即IEEE 802.16m标准发布,它所支持的数据速率是WiMAX 1.0的数倍。2012年,WiMAX 2.0被正式认定为4G(第四代移动通信技术,the 4 Generation mobile communication)标准[3]。4G技术是指符合ITU(国际电信联盟,International Telecommunication Union)提出的IMT-Advanced(高级国际移动通信,International Mobile Telecommunications-Advanced)系统性能要求的技术,即对低速用户下行峰值速率能够达到1 Gbps,对高速用户能够达到100 Mbps,从而为移动用户提供高级服务和应用[4]。

LTE(长期演进,Long Term Evolution)是由3GPP(第三代合作伙伴计划,The 3rd Generation Partnership Project)提出的一种通信技术标准,是TD-SCDMA(时分同步码分多址,Time Division-Synchronous Code Division Multiple Access), UMTS(通用移动通信系统,Universal Mobile Telecommunications System)和CDMA2000等3G(第三代移动通信技术,3rd-Generation)向4G演进的跨越性一步,对数据传输速率、系统容量以及延迟有着苛刻的要求[5]。2011年,3GPP基于UMTS R10 版本提出的LTE-A(LTE改进,LTE-Advanced)也是一种得到业界认可的4G技术标准[3]。

LTE和WiMAX这两种技术之间虽然有很多的相似之处,但是它们之间的竞争,从它们各自准4G标准的发布就已经开始,并持续到4G标准的提出。最终,WiMAX似乎放弃了这场竞争,选择了在未来的WiMAX-A(WiMAX 改进,WiMAX-Advanced)标准中与LTE技术相融合。本文讨论了这两种技术在技术方面的相似之处和不同点,精确定位到它们各自相对于对方的优势所在,同时也探讨了影响这两种技术发展的诸如政策、历史及经济等非技术类因素。最后,本文结合当前LTE和WiMAX技术未来的发展计划,对这两种技术的发展前景进行了展望,并对WiMAX技术的可替代性进行了讨论。

本文剩下的部分由以下章节组成:第二节展示了LTE和WiMAX技术的演进;第三节展示了这两种技术的显著特征;第四节讨论了这两种技术之间的关键技术差异;第五节讨论了一些影响彼此发展的非技术因素;第六节讨论了这两种技术的未来;最后一节为本文总结。

2 标准的演进

图1展示了LTE和WiMAX技术的演进过程。LTE技术起源于电信运营商、3GPP协会和3GPP2(第三代合作伙伴计划2,3rd Generation Partnership Project 2)协会所倡导第1、2、3代移动通信技术。1G(第1代移动通信技术,First Generation)技术是以欧洲的TACS(全入网通信系统,Total Access Communications System)和AMPS(高级移动电话系统,Advantage Mobile Phone System)为代表的模拟通信系统。2G(第2代移动通信技术,Second Generation)时代为数字通信时代,除语音业务外,可以传输低速的数据业务,以GSM(全球移动通信系统,Global System for Mobile Communication)和CDMA-ONE通信标准为代表。2.5G阶段采用增强型分组交换技术,例如GPRS(通用分组无线服务技术,General Packet Radio Service)和EDGE(增强型数据速率GSM演进技术,Enhanced Data Rate for GSM Evolution),实现中等速率数据传输,而语音业务仍为电路交换。IMT-2000(国际移动电话系统-2000,International Mobile Telecom System-2000)是由ITU提出的3G系统,与多媒体技术相结合,能够处理声音、图像、视频等多种形式数据,能够提供与物联网连接的多种信息服务。其中WCDMA(宽带码分多址,Wideband Code Division Multiple Access)在欧洲和世界其他国家和地区被广泛采用,CDMA2000(码分多址2000,Code Division Multiple Access 2000)是主要用于北美的3G技术。WCDMA和CDMA2000都是频分双工系统,采用一对频带分别用作发送和接收。第三种3G标准为中国主导的TD-SCDMA,利用时分双工技术实现数据在同一个频段内的发送和接收。3G系统仍旧采用的是电路交换和分组交换技术相结合。在增强型3G阶段,HSPA(高速分组接入,High-Speed Packet Access)极大提升了WCDMA、TD-SCDMA系统分组数据的传输速率;CDMA2000系统也发展了相应的EV-DO和EV-DV版本,实现了高速数据业务传输,并且能同时在一个CDMA载频上能同时支持话音和数据。

3GPP R8标准提出了基于OFDM(正交频分复用,Orthogonal Frequency Division Multiplexing)技术的全IP的LTE技术标准,有TDD(时分双工,Time Division Duplexing)和FDD(频分双工,Frequency Division Duplexing)两种模式,即TDD-LTE和FDD-LTE。由北美3GPP2主导的UMB(超移动宽带,Ultra Mobile Broadband)是CDMA2000系列标准基于OFDM技术的演进升级版本,最终退出了LTE的标准竞争。TDD-LTE由TD-CDMA演进而来。虽然LTE仍是3G标准,但是它所支持的无线速率是基本3G系统的数倍,因此LTE又被称为准4G或3.9G,而在商业上通常称之为4G。

ITU在2003年提出了的IMT-Advanced概念,明确了4G系统架构和总体设计目标,并将2009年10月定为4G技术规范建议书的最后提交日期[4]。ITU要求IMT-Advanced系统峰值速率达到1Gbps,当终端移动速度在500km/h时能够达到100Mbps,同时对分组交换时延、VoIP(Voice over Internet Protocol)系统效率也提出了更高的要求,此外对频谱效率尤其是小区覆盖边缘区域的频谱效率有严格的要求,以实现高吞吐率。LTE-A是基于3GPP 2011年发布的UMTS R10标准,是经过官方认可的满足IMT-Advanced性能要求的4G标准。

WiMAX是由IEEE系列标准演进而来的一种无线通信技术,例如IEEE802.3以太网标准、IEEE 802.11 WiFi无线技术等。早期在城域无线宽带技术方面的一些研究都是基于非移动的无线接入技术。由于系统频段较高,需采用视距传播,且容易受到雨、雾等天气的影响,这些研究大多没有取得实质性的成果。第一个具有实用价值的技术标准是2004年发布的IEEE 802.16d标准[1]。IEEE 802.16d标准旨在为固网用户提供最后一公里高速率的无线接入,对传统的DSL和同轴电缆运营商形成了真正的威胁。2005年发布的IEEE 802.16e标准是移动WiMAX或WiMAX 1.0技术的基础[2]。在第一个3G技术标准诞生许多年后,WiMAX技术在2007年被正式认定为3G技术[6]。2011年3月发布的IEEE 802.16m标准被为认为是WiMAX的2.0版本。IEEE 802.16m对802.16e标准的空中接口进行了改进,在满足IMT-Advanced性能要求的同时,又能与先前的802.16系列标准兼容。WiMAX 2.0所能提供的峰值速率是WiMAX 1.0的数倍,能够满足ITU IMT-Advanced系统的性能要求,是另一个被官方认可的4G技术标准[4]。实际上LTE-A和WiMAX 2.0标准都还没有最终定型,许多WiMAX技术倡导者有计划将WiMAX技术与LTE-A技术相融合。如图1最右边所示(Beyond 4G/Evolved 4G/Evolved 3G),双方都制定了未来的技术发展规划,详细内容将在下文进行探讨。

3 LTE和WiMAX的技术特征

LTE和WiMAX都是基于全IP的技术标准,采用相同的分组核心网,这使得它们都能很好的支持VoIP业务产生的突发数据流量。同样这两种技术标准也都采用了OFDMA(正交频分多址,Orthogonal Frequency Division Multiple Access)技术。在OFDM系统中,子载波将相互正交,频谱效率得到提升,同时有助于降低ISI(符号间干扰,Inter-Symbol Interference)和系统自适应均衡的复杂性,对频率选择性衰落和窄带干扰也有较强的容忍度。在OFDMA系统中,时频资源能够得到周期性复用,使得系统性能最大化[7]。除了以上几点外,还有一些重要特点如下[8]:

1) 子载波信道重分配:在频谱分配上,一些子载波用于数据传输,一些子载波作为保护带宽或导频。数据和导频被周期性地随机分配在不同的子信道上,换句话说就是跳频,频域上所有的信道都在跳变。这样可以实现干扰平均化,减少系统纠错,恢复系统性能[9]。将系统子载波分为多个组,每个小区只使用其中的一个或多个子载波组,这叫做PUSC(Partial Usage of Sub-Carriers),降低了本小区与邻小区之间的干扰。另一种技术是FFR(部分频率复用,Fractional Frequency Reuse),即用户在小区覆盖的中心区域时能够使用到所有的频点,而在两个小区覆盖的交界处,两个小区的用户分别使用不同的频点,以此来降低小区间的干扰水平。

2) SOFDMA(可扩展OFDMA,Scalable OFDMA):LTE和WiMAX(如WiMAX 1.0和WiMAX 2.0)都采用了SOFDMA技术。系统子载波数目随着系统带宽的变化而变化,而子载波间的间隔始终是不变得,因此对移动着的用户而言,多普勒效应对系统性能的影响是不变的。WiMAX 16e的系统带宽可以在1.25MHz~28MHz间任意设定,LTE R8系统支持的系统带宽可以为1.25, 2.5, 5, 10, 15, 20 MHz。

3) AMC (自适应调制编码,Adaptive Modulation and Coding):LTE和WiMAX都采用了AMC技术。由于低阶调制方式相对于高阶调制方式具有更强的鲁棒性,系统可以根据用户信道的质量情况,及时调整调制方式。当信道质量较好的时候,采用16QAM(相正交振幅调制,Quadrature Amplitude Modulation)或64QAM等高阶调制方式,通过提高编码效率提升系统传输速率。当信道质量较差,即用户信号信噪比较低时,采用QPSK(正交相移键控,Quadrature Phase Shift Keying)等鲁棒性较强的低阶调制,确保链路质量即传输误码率保持在用户或系统可以接受的范围。另一方面,当采用16QAM调制方式的用户的信号质量得到改善时,系统可以将调制方式切换到64QAM这样的高阶调制方式,提高系统容量和传输效率。当AMC与OFDM技术相结合时,将会为系统带来更大的增益,因为AMC更加适用于噪声平均的宽带信道[10]。LTE和WiMAX标准的另一个特征是使用了HARQ(混合自动重传,Hybrid Automatic Repeat Request)技术,用于错误检测和多天线系统,从而进一步增强系统性能和数据速率。

4) 系统帧结构:由于WiMAX 1.0的帧长为5ms,而LTE的子帧只有1ms,因此WiMAX 1.0相比LTE具有更长的时延。WiMAX 2.0将一个5ms帧分成了8个子帧,每个子帧长5/8ms,同时保留了5ms的帧结构用于和WiMAX 1.0系统兼容。WiMAX 2.0系统还定义了一个长度为20ms的超帧,通过合并一般帧头和控制比特,来减少系统帧头的整体开销。WiMAX 2.0系统的三层帧结构,有助于提升VoIP业务的QOS(服务质量,Quality of Service)。LTE系统也采用了类似的3层帧结构,其基本时隙长度为0.5ms,子帧长度为1ms,超帧长度为10ms。LTE-A和WiMAX 2.0系统的帧结构如图2所示。

图2 帧结构:(a)WiMAX 2.0帧结构;(b)LTE-A帧结构。

5) 载波聚合:为了达到IMT-A系统对峰值速率的要求,LTE-A和WiMAX 2.0系统通过增加传输带宽的方式来提升系统所能支持的峰值速率,这两中系统的信号最大带宽分别达到了40MHz和100MHz。由于在现实中不可能直接找到一个具有如此大带宽的频带,系统子载波必须分布在多个频带内,这就是所谓的多载波/载波聚合。任何一个信道的子载波可以在一个连续的频带内,也可以来自不同的频带。

6) 小区吞吐量:除了峰值速率外,IMT-A系统对小区边缘吞吐量也有严格的要求。目前LTE-A和WiMAX 2.0系统已经能够轻松地达到这一要求[11] [12]。例如WiMAX 2.0系统在小区中心和小区边缘的频率效率能够分别达到2.6 bit/s/Hz/sector和0.09 bit/s/Hz/sector,分别超过了IMT-A系统要求的2.2 bit/s/Hz/sector和0.06 bit/s/Hz/sector。

7) LTE-A和WiMAX 2.0还支持许多其他技术来提升传输速率[11] [13] [14] 。例如:

Femto(家庭基站),能够以最大的数据速率提供住宅内部的移动通信能力,提升小区吞吐量。

LTE-A系统中采用的8 8 MIMO(多入多出技术,Multiple-Input Multiple-Output)。

CoMP(协同多点传输,Coordinated Multiple Points)技术,多个基站可以协同参与为一个终端传输数据或者联合接收一个终端发送的数据。尤其在小区覆盖的边缘区域,系统可将用户置于几个基站的同一频率上,几个基站同时为该用户服务,降低小区间干扰,提升边缘用户的覆盖性能和频谱效率。

使用中继点来延伸覆盖,提高小区边缘吞吐率。

LTE-A和WiMAX 2.0采用SON(自组织网络,Self-Organizing Networks)技术组网,利于操作、维护费用的降低和系统性能的提升。

4 LTE和WiMAX的技术差异

由上节所述,LTE和WiMAX在系统架构和设计目标方面具有许多技术方面的相似之处,例如:都采用了基于扁平IP架构的OFDMA技术,通过应用各项技术达到甚至超过了IMT-A系统的性能要求。然而,这两种标准间也存在着许多技术上的差异。WiMAX 1.0相对于LTE系统,以及WiMAX 2.0相对于LTE-A系统的技术差异主要有以下几方面:

1) 双工模式:LTE和WiMAX技术都能够支持TDD和FDD两种双工模式。虽然移动通信技术经过几代的发展,但FDD模式仍是大多数电信公司的主流选择。而TD-LTE是中国国自主提出的3G标准IEEE Standard 802.16-2004, 2004.

[2] IEEE, IEEE Standard 802.16e-2005, 2006.

[3] ITU Press Release, 2012. http://www.itu.int/net/pressoffice/press_releases/2012/02.aspx

[4] ITU, ITU-R M.1645, 2003.

[5] 3GPP, 3GPP TS 25.913, 2007.

[6] ITU Press Release, 2007. http://www.itu.int/newsroom/press_releases/2007/30.html

[7] C. Gessner, A., Roessler and M. Kottkamp, Rohde and Schwarz, Application Note, IMA111_3E, 2012.

[8] A. Zreikat, I. Aldmour and K. Al-Begain, Wireless Personal Communications, Vol. 72, No. 1, 2013, pp. 191-210. http://dx.doi.org/10.1007/s11277-013-1008-0

[9] L. Korowajczuk, Wiley, 2011. http://dx.doi.org/10.1002/9781119970460

[10] C. Y. Wong, R. S. Cheng, K. B. Lataief and R. D. Murch, IEEE Journal on Selected Areas in Communications, Vol. 17, No. 10, 1999, pp. 1747-1758. http://dx.doi.org/10.1109/49.793310

[11] S. Ahmadi, IEEE Communications Magazine, Vol. 47, No. 6, 2009, pp. 84-98. http://dx.doi.org/10.1109/MCOM.2009.5116805

[12] T.-T. Tran, Y. Shin and O.-S. Shin, EURASIP Journal on Wireless Communications and Networking, Vol. 2012, No. 1, 2012, pp. 1-12. http://dx.doi.org/10.1186/1687-1499-2012-54

[13] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P. Mayer, L. Thiele and V. Jungnickel, IEEE Communications Magazine,Vol. 49, No. 2, 2011, pp. 102-111. http://dx.doi.org/10.1109/MCOM.2011.5706317

[14] K. Etemad, IEEE Communications Magazine, Vol.46, No. 10, 2008, pp. 31-40. http://dx.doi.org/10.1109/MCOM.2008.4644117

[15] IXIA, IXIA White Paper, November 2009.

[16] L. Yi, K. Miao and A. Liu, Proceedings of the 13th International Conference on Advanced Communication Technology (ICACT), Gangwon-do, South Korea, 13-16 February 2011, pp. 654-658.

[17] 2009. http://resources.wimaxforum.org/sites/wimaxforum.org/files/wimax_in_india_protiviti_paper_0.pdf

[18] M. Peng and W. Wang, IEEE Communications Magazine, Vol. 47, No. 12, 2009, pp. 50-58. http://dx.doi.org/10.1109/MCOM.2009.5350368

[19] WiMAX Forum, WMF T31-002-R010-v01, February 2013.

[21] Z. Brabec, J. Holecek and T. Hruza, Proceedings of15th International Symposium on MECHATRONIKA, Prague, 5-7 December 2012, pp. 1-5.

[22] Q. Wang, J. Wang, Y. Lin, J.Tang and Z. Zhu, Proceedings of IEEE Third International Conference onSmart Grid Communications (SmartGridComm), Tainan,5-8 November 2012, pp. 246- 251.

[23] B. Ayvazian and R. Schwartz, 2012. http://www.wimaxforum.org/LiteratureRetrieve.aspx?ID=177981

[24] T. Parker, 2012. http://www.fiercebroadbandwireless.com/node/14529/print

[25] S. Parkvall, E. Dahlman, A. Furuskar, Y. Jading, M. Olsson, S. Wanstedt and K. Zangi, Proceedings of IEEE 68th Vehicular Technology Conference (VTC 2008-Fall), Calgary, 21-24 September 2008, pp. 1-5.

[26] K. Mallinson, 2012. http://www.3gpp.org/IMG/pdf/wiseharbor.pdf

[27] Y. Yang, H. Hu, J. Xu and G. Mao, IEEE Communications Magazine, Vol. 47, No. 10, 2009, pp. 100-105. http://dx.doi.org/10.1109/MCOM.2009.5273815

Copyright © 2016-2018 www.holleycomm.com All Rights Reserved.
华立通信 版权所有 网站ICP号:粤ICP备18027101号